FRACTIONS

DR. CHENG WING KIN
$2^{\text {ND }}$ FEB., 2018

FINDINGS IN BASELINE TEST

8 Share a bar of chocolate equally among 5 children．
What fraction of the chocolate bar does each child get？

$(42 \%, 67 \%, 80 \%),(3 \%, 6 \%, 7 \%)$

11 Fill in the blanks．

（a）$\frac{1}{5}$ of 15 is $\square(40 \%, 35 \%, 72 \%),(5 \%, 8 \%, 2 \%)$
（b）$\frac{3}{5}$ of 15 is \square
－3N6 Fractions（I）：Develop the concept of fractions as a part of one whole and a part of a set of objects
－分數（一）：認識分數作為整體的部分及一組物件的部分。

WHY FRACTION IS SO DIFFICULT?

- What does it mean by $\frac{1}{4}$?
- Different meanings of fractions:
- Part-whole relationship (a part of a whole)
- Unit fraction (as a basic unit)
- Dividing (part of a set of objects)
- Representation of numbers (on a number line)
- Idea of ratios

WHY FRACTION IS SO DIFFICULT?

- Some common mistakes of students
- $\frac{1}{2}+\frac{2}{3}=\frac{1+2}{2+3}$
- $\frac{1}{2} \div \frac{2}{3}=\frac{2}{1} \div \frac{3}{2}$
- $2 \times \frac{1}{3}=\frac{2 \times 1}{2 \times 3}$
- $\frac{11}{9}=1 \frac{1}{9}$
- Peter has 6 candies. He gives one-thirds of his candies to John. How many candies does Peter have at the end?
- $6-\frac{1}{3}$

PROCEDURAL UNDERSTANDINGVS CONCEPTUAL UNDERSTANDING

- When students learn without conceptual understanding, they memorize different procedures / algorithms.
- Since there are many different meaning of fractions and many different procedures in the fraction operation, students get mixed up when everything comes together.
- In the delivery of the concept of fraction, some teachers explain a lot. However, students sometimes do not follows teachers' line of thoughts.

USING TOOLS

- Part-whole (Halving paper, cutting shapes - pizza, folding paper, shading shapes)
- Unit fraction (Counting of same unit fraction, fraction bar, number lines, fraction stripes)
- Multiplication (Grid boxes)
- Division (fraction bars)

TOOLS,TALK,TASKS

- Tools:
- Square paper, stripes with equal division, pizza, fraction slides, grid boxes, fraction bar, virtual tools, etc.
- Can the tools become students' tools?
- Talk:
- Students' talk (verbal, written works or drawing)
- Are students allowed to talk or to express their ideas?
- Tasks:
- Learning tasks, exploring tasks, ...
- Are students doing repetitive task (e.g. drilling exercises only)?

SOME EXAMPLES

- Meaning of Unit Fractions
https://www.illustrativemathematics.org/progressions
(A fraction can be built from copies of unit fractions.)
- Using number line and fraction stripes to show equivalent fraction
http://www.doe.mass.edu/frameworks/math/2017-06qrg-fractions.pdf
(number lines, fraction stripes, fraction slides can be used)
- MALATI Fractions materials http://academic.sun.ac.za/mathed/malati/Fractionsd.htm

MULTIPLICATION OF FRACTIONS

- Models in mind

https://nrich.maths.org/8348

Using array model (or area model) to explain the meaning of multiplication of fraction

DIVISION OF FRACTIONS

- Two methods - Common denominators, Invert

https://www.youtube.com/watch?v=tBxPYosbyWw

- Explaining why the division of fraction is the same as the division of integers with the common denominators method.

$$
\frac{2}{3} \div \frac{1}{5}=\frac{10}{15} \div \frac{3}{15}=10 \div 3=\frac{10}{3}=3 \frac{1}{3}
$$

- Using fraction bars to explain division of fraction is the same as the multiplication of its reciprocal.

$$
\frac{2}{3} \div \frac{1}{5}=\frac{2}{3} \times 5=\frac{10}{3}=3 \frac{1}{3}
$$

BASELINE TEST QUESTIONS

- What is a whole?
-What is the unit fraction?
- What does it mean by a third a rectangle?
- What does it mean by $\frac{1}{5}$ as part of a set of objects?

8 Share a bar of chocolate equally among 5 children.
What fraction of the chocolate bar does each child get?

($42 \%, 67 \%, 80 \%$), (3\%, 6\%, 7\%)
9 Shade two-thirds of this rectangle. $(29 \%, 41 \%, 57 \%),(5 \%, 5 \%, 0 \%)$

11 Fill in the blanks.

(a) $\frac{1}{5}$ of 15 is \square
$(40 \%, 35 \%, 72 \%),(5 \%, 8 \%, 2 \%)$
(b) $\frac{3}{5}$ of 15 is \square $(23 \%, 26 \%, 67 \%),(5 \%, 10 \%, 4 \%)$

TOOLS,TALK,TASKS

- Tools
- Allow students to play with the tools
- Allow students to use different tools
- Linking the tools to the mathematics concepts and mathematics representation
- Talk
- Allow students to express their thoughts (verbal, written works and drawings)
- Guiding students to express with key mathematics terminologies.
- Tasks
- building up from students' prior knowledge
- linking up different mathematics concepts
- contains open-ended questions

RESOURCES

「以行求知」研討會／經驗分享會系列	http：／／www．edb．gov．hk／tc／edu－system／primary－secondary／applicable－to－ primary－secondary／sbss／school－based－curriculum－primary／professional－ sharing／journey－ss／index．html
建構分數乘法的概念 從分數除法的理解到應用	http：／／cd I．edb．hkedcity．net／cd／sbcdp／seminar／2007／attachment／tc／m05．p pt http：／／cdI．edb．hkedcity．net／cd／sbcdp／seminar／2007／attachment／tc／m08．p pt
GeoGebra Institute of Hong Kong （GIHK）	http：／／www．geogebra．org．hk／materials／ks2／n
MALATI Materials（from South Africa） GET MATLATI MATERIALS \rightarrow By downloading it from this site \rightarrow Fractions	http：／／academic．sun．ac．za／mathed／malati／
Illustrative Mathematics Fractions Progression Model	https：／／www．illustrativemathematics．org／progressions

