EXERCISE counts! PRACTICE makes PERFECT!?

 Designing exercise that promotesConceptual understanding \& Self-regulated learning

Ka Lok WONG
September 27, 2019

Practice makes perfect！？

絽習十九
姑算下列各题。

$1 . \quad 3 \times 2=$	1.6
2．$\quad 8 \times 4=$	2.32
$3 . \quad 3 \times 3=$	3.9
$4 . \quad 7 \times 6=$	4.42
$5 . \quad 1 \times 4=$	5.4
$6 . \quad 7 \times 4=$	6.28
$7 . \quad 6 \times 9=$	7.54
$8 . \quad 2 \times 5=$	8.10
$9 . \quad 8 \times 2=$	9.16
$10 . \quad 9 \times 7=$	10.63

學習日誌：	成積：

typical exercise

2．$\quad 90 \times 2=$	$\mathbf{2 . 1 8 0}$
3．$\quad 60 \times 9=$	$\mathbf{3 . 5 4 0}$
4．$\quad 50 \times 4=$	$\mathbf{4 . 2 0 0}$
5．$\quad 80 \times 7=$	$\mathbf{5 . 5 6 0}$
6．$\quad 40 \times 6=$	$\mathbf{6 . 2 4 0}$
7．$\quad 20 \times 8=$	7． 160
8．$\quad 70 \times 5=$	$\mathbf{8 . 3 5 0}$
9．$\quad 30 \times 2=$	9． 60
10． $60 \times 0=$	10． 0

楽習日誌：	成锣：

第 20 頁

Practice makes perfect！？

－
絩習十九
胡算下列各题

1.	$3 \times 2=$	1.6
2.	$8 \times 4=$	2.32
3.	$3 \times 3=$	3.9
4.	7×0	4.42
5.	$1 \times 4=$	5.4

Key questions：
＞WHAT kind（s）of practice？
＞For WHAT PURPOSE（S）？

成钼

$2 \times 3=$	$6 \times 7=$	$9 \times 8=$
$2 \times 30=$	$6 \times 70=$	$9 \times 80=$
$2 \times 300=$	$6 \times 700=$	$9 \times 800=$
$20 \times 3=$	$60 \times 7=$	$90 \times 8=$
$200 \times 3=$	$600 \times 7=$	$900 \times 8=$
Shanghai Textbook Grade 2 (aged 7/8)		

Key questions:

> WHAT kind(s) of practice?
> For WHAT PURPOSE(S)?

Example：Practice with multiplication and

1． $19 \times 2=$
2． $18 \times 3=0$
3． $17 \times 4=$
4． $16 \times 5=$
5． $15 \times 6=$
6． $14 \times 7=$
7． $13 \times 8=$
8． $12 \times 9=$
\qquad

1． $3 \times 2=$	1． 6
2． $8 \times 4=$	2.32
3． $3 \times 3=$	3． 9
4． $7 \times 6=$	4． 42
5． $1 \times 4=$	5． 4
6． $7 \times 4=$	6.28
7． $6 \times 9=$	7.54
8． $2 \times 5=$	8． 10
9． $8 \times 2=$	9.16
10． $9 \times 7=$	10． 63

绿翌二十

1． $10 \times 9=$	1． 90
2． $90 \times 2=$	2． 180
3． $60 \times 9=$	3． 540
4． $50 \times 4=$	4． 200
5． $80 \times 7=$	5． 560
6． $40 \times 6=$	6． 240
7． $20 \times 8=$	7． 160
8． $70 \times 5=$	8． 350
9． $30 \times 2=$	9． 60
10． $60 \times 0=$	10． 0

Can you write out another set of multiplication expressions like the ones you have just done？

Example：Simple addition and ．．．

算一算，照样子分别再写出一组算式。

$3 \times 7=$
$30 \times 7=$
$300 \times 7=$

$$
\begin{aligned}
& 63 \div 9= \\
& 630 \div 9= \\
& 6300 \div 9=
\end{aligned}
$$

Example：Practice with multiplication and division

里应该填几？

$\square \times 2=24$
$\square \times 3=60$
$\square \times 3=12$
$\square \div 2=24$
$\square \div 3=60$
$\square \div 3=12$

Can you write out another set of expressions

 like the ones you have just done？Mathematics Book 3A published by Beijing Normal University 2014 （p．38）

Key Idea: Patterns and systematic variation

These exercises provide both the opportunity to practice calculation whilst at the same time thinking about the relationships within the mathematics.

Retreived February 21, 2018 at https://www.ncetm. org.uk/ public/ files/ 22344481/Variation\%20supports\%20Intelligent\%20Practice.pdf

Variation supports Intelligent Practice

$7+2=$	$9+6=$	$8+3=$	$1+9=$
$17+2=$	$10+6=$	$10+3=$	$2+8=$
$7+12=$	$11+6=$	$12+3=$	$3+7=$
$17+12=$	$13+6=$	$3+14=$	$6+4=$

$\begin{array}{r}4 \Delta \\ \times \quad 16 \\ \hline\end{array}$	9-5 =	9-7 =
$\times \square \square \square$	$8-5=$	$11-7=$
$\square \square$	$7-5=$	$13-7=$
$\begin{aligned} & 720 \\ & =\left(\begin{array}{l} \end{array}\right) \end{aligned}$	$6-5=$	$15-7=$

These exercises provide both the opportunity to practice calculation whilst at the sáme time thinking about the relationships within the mathematics.

Retrieved February 21, 2018 at https:// www.ncetm.org.uk/ public/ files/ 22344481/ Variation\%20supports\%20Intelligent\%20Practice.pdf

Example: Practice with decimals \& fraction

On the number line ...

1. Draw a line (say 15 cm long) on a plain paper. Mark the left end 0 and the right end 1 . By dividing the line between 0 and 1 into 10 parts, locate the decimal numbers $0.1,0.2, \ldots, 0.9$ on the line. (Such a number line may also be provided.)
2. Given a list of fractions and/ or decimals, e.g.

$$
0.5, \quad 1 / 4,2 / 5,0.8, \quad 0.25, \quad 7 / 10,0.75,5 / 8
$$

3. Estimate their location on the line.
(Adapted from Francome \& Hewitt, p. 31)
Francome, T. \& Hewitt, D. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Example: Simple addition and ...

Example: Practice with multiplication and

Fill in a number (as large as possible) in the box. 1. $4 \times \square$ is less than 17 . 2. $6 \times \square$ is less than 25 .
3. $\square \times 5$ is less than 43 .
4. $\square \times 7$ is less than 62 .
5. $\square \times 8$ is less than 38 . 6. $9 \times \square$ is less than 57 .

Cf Mathematics Book 2B published by Beijing Normal University 2013 (p. 7)

Example: Simple addition and ...

Draw 3 balls on the target. Add up the points. Choose the prize you would get with the points.

Rikala, S. et al. (2006). Laskutaito (in English) 2B. Helsinki: WSOY Oppimateriaalit Oy.

Example: Practice with multiplication and

1. $142857 \times 1=$
2. $142857 \times 2=$
3. $142857 \times 3=$
4. $142857 \times 4=$
5. $142857 \times 5=$
6. $142857 \times 6=$
7. $142857 \times 7=$

Mathematics Book 4A published by Beijing Normal University 2014 (p. 38)

Example: Practice with basic operations

Target 24

1. Choose four (single-digit) numbers.
2. Use any of the four basic operations and brackets.
3. Use each number exactly once.
4. Write expressions to make 24.
5. Once you are done, try to carry on to get numbers greater than 20. How far can you go?
(Adapted from Francome \& Hewitt, p. 24)
Francome, T. \& Hewitt, D. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Example: Practice with basic operations

One to Four

1. Use the numbers $1,2,3$, and 4 . You must use them all.
2. Use any of the four basic operations and brackets.
3. Write expressions to make every number from 1 to 20.
4. Once you are done, try to carry on to get numbers greater than 20. How far can you go?
(Adapted from Francome \& Hewitt, p. 24)

Francome, T. \& Hewitt, D. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Example: Practice with basic operations

Four Fours

1. Use the numbers 4, 4, 4, and 4. You must use all four 4s.
2. Use any of the four basic operations and brackets.
3. Write expressions to make every number from 1 to 20.
4. Once you are done, try to carry on to get numbers greater than 20. How far can you go?
(Adapted from Francome \& Hewitt, p. 24)

Francome, T. \& Hewitt, D. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Improve the learning experience in doing exercise

Exercise that ...
encourages students to think (talk) builds up concepts

Example: Basic ideas about decimals, fractions,

Giving meanings to number sentences.

Describe a situation that fits the number sentence.

$12 \times 4=48$
Each pack contains 12 pencils, how many pencils are there in 4 packs?
$2 \div \frac{1}{3}=2 \times 3=6$
One third of a piece of bread is needed to make a sandwich, how many sandwiches could be made from 2 pieces of bread?
$18 \div 4.5=4$
Peter can walk 4.5 km each hour. How long will he take to walk 18 km ?

Another example

How will students respond and what further questions can be asked?

Good Exercise should ...

help students to show their understanding
(the formula for area of parallelogram in this case) thus allow teacher / peers to provide support

Example

Will the diagram help students to avoid some mistakes?

Examples

What is the advantage of questions with slight variation?

Examples

Calculate the following (use diagrams to illustrate your working).

Example: Practice with brackets and ...

Put in brackets to make the following calculations correct:

$$
\begin{aligned}
& 8 \times 5-4+12 \div 2=24 \\
& 8 \times 5-4+12 \div 2=14 \\
& 8 \times 5-4+12 \div 2=42 \\
& 8 \times 5-4+12 \div 2=-44 \\
& 8 \times 5-4+12 \div 2=12 \\
& 8 \times 5-4+12 \div 2=52 \\
& 8 \times 5-4+12 \div 2=10 \\
& 8 \times 5-4+12 \div 2=32 \\
& 8 \times 5-4+12 \div 2=-24
\end{aligned}
$$

Francome, T. \& Hewitt, D. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Example: Practice with brackets and ...

Put in brackets to make the following calculations correct:

$$
\begin{aligned}
& 8 \times 5-4+12 \div 2=24 \\
& 8 \times 5-4+12 \div 2=14 \\
& 8 \times 5-4+12 \div 2=42 \\
& 8 \times 5-4+12 \div 2=-44 \\
& 8 \times 5-4+12 \div 2=12 \\
& 8 \times 5-4+12 \div 2=52 \\
& 8 \times 5-4+12 \div 2=10 \\
& 8 \times 5-4+12 \div 2=32 \\
& 8 \times 5-4+12 \div 2=-24
\end{aligned}
$$

Now use brackets to get different answers to any of those you have already got:

$$
\begin{aligned}
& 8 \times 5-4+12 \div 2= \\
& 8 \times 5-4+12 \div 2=
\end{aligned}
$$

(Francome \& Hewitt, p. 24)

Francome, T. \& Hewitt, T. (2017). Practising mathematics: Developing the mathematician as well as mathematics. Derby, UK: Association of Teachers of Mathematics.

Intelligent Practice

not only multiplication, not simply quick / mental calculation, but attention to place values

$2 \times 3=$	$6 \times 7=$	$9 \times 8=$
$2 \times 30=$	$6 \times 70=$	$9 \times 80=$
$2 \times 300=$	$6 \times 700=$	$9 \times 800=$
$20 \times 3=$	$60 \times 7=$	$90 \times 8=$
$200 \times 3=$	$600 \times 7=$	$900 \times 8=$

Shanghai Textbook Grade 2 (aged 7/8)
"...r rather than pupils repeating a mechanical activity, they are taken down a path where the thinking process is practised with increasing creativity."
"The arrangement of these tasks and exercises draw pupils' attention to patterns, structure and mathematical relationships, thus providing 'intelligent practice' and the opportunity to deepen conceptual understanding."

Source: http:/ / www. mathshubs. org.uk/ bespoke/ april-2015/ intelligent-practice/

Intelligent Practice

$2 \times 3=$	$6 \times 7=$	$9 \times 8=$
$2 \times 30=$	$6 \times 70=$	$9 \times 80=$
$2 \times 300=$	$6 \times 700=$	$9 \times 800=$
$20 \times 3=$	$60 \times 7=$	$90 \times 8=$
$200 \times 3=$	$600 \times 7=$	$900 \times 8=$

"The practice that Chinese children engage in provides the opportunity to develop both procedural and conceptual fluency. Children are required to reason and make connections between calculations. The connections made improve their fluency."
(NCETM, 2015, p. 7)

NCETM (October 2015). Calculation Guidance for Primary Schools.
https:/ / www.ncetm. org. uk/ public/ files/ 25120980/ NCETM+Calculation+Guidance+October+2015. pdf

Intelligent Practice

"The practice that Chinese children engage in provides the opportunity to develop both procedural and conceptual fluency. Children are required to reason and make connections between calculations. The connections made improve their fluency."

The above examples also show a common feature:
With the task at hand, students are working on many calculations which are not simply at the order of the teacher but naturally generated (partly by the students themselves) according to certain mathematical principles and/ or out of their curiosity about certain unexpected results or patterns.

