

Hong Kong Taoist Association Wun Tsuen School

Mr. Au Kin Keung
Mr. Lam Chor Wing
Mr. Ho Po Kwong

P. 5 Measures

Area of Parallelograms, Triangles and Trapeziums

Objectives of the Lesson

- Enable students to understand and apply the formula for finding the area of parallelograms, triangles and trapeziums.

GeoGebra Time

Area of Parallelogram

https://www.geogebra.org/classic/qktjmhky

Area of Triangle

https://www.geogebra.org/classic/kstmngvg

Highlights of the Lesson

A. Using the same base but different height, find the area of parallelogram and triangle in the following table.

Base (cm)	Height (cm)	Area of parallelogram	Area of triangle
	2		
	3		
10	4		
10	5		
10	6		

From observation, the area of triangle is \qquad of the area of parallelogram that with the same base and height
B. Estimate the area of triangle in the following table.
B. Estimate the area of triangle in the following table.

		Estimate	
Base (cm)	Height (cm)		
8	2		
8	3		
8	4		
8	5		

C. Hypothesis "the area of triangle is \qquad -

Triangle A is (equal to / not equal to) Triangle B.

Triangle C is (equal to / not equal to) Triangle D

A parallelogram can be cut into \qquad identical triangles.

The area of triangle is \qquad of the area of parallelogram with the same base and height.

The area of parallelogram is Base \times Height. (Mathematical expression)

So, the area of the triangle is \qquad (Mathematical expression)

Snapshots of the Lesson

Other Resources of GeoGebra

http://www.geogebra.org.hk

GeoGebra Institute of Hong Kong
Vision: To promote and support the use of GeoGebra and the development and sharing of its materials in Hong Kong, and to nurture collaboration between teachers, educators and researchers for a self-sustaining community of practice.
[1 Hosing Insitute: Department of Education Studies, Hong Kong Bapisist University

P. 4 Number

Mixed Operations - Bingo

Objective of the lesson

* Applying the use of operators.
* Raise the interests in calculation by co-operation and competition.

Rules of the game:

* Need to use all the 4 numbers.
* Use " + ", " - ", " \times ", or " \div " to make a number statement.

Rules of the game:

* If there have two " 0 ", one of them can be thrown again.
- If no one find the Bingo, the team which get more number correct is the winner.

Hong Kong Taoist Association Wun Tsuen School

Hong Kong Taoist Association Wun Isuen School 2018-2019 Mathematics
Maths Bingo Competition
2018-2019 Mathematics
Maths Bingo Competition 2

Name :							
Class:				Date:			
The dice' number		8					
	2	8	9	12	13	Numb Bingo(s)	
\square	14	15	16	22	27		
	32	40	42	43	46		
	51	52	55	56	57		
	58	62	67	74	75		
	Stat	cat				Answer	Checked

Name :
Class:

Number of Bingo(s) Found

Number Statement	Answer	Checked

Reflection of the lesson

* Students were fully engaged in the lesson.

P. 5 Shape and Space

3-D shapes - Nets of cubes

Objectives of the Lesson

- Enable students to recognise the patterns of nets can fold into a cube.

Highlights of the Lesson

A.) Try the following nets. Can these nets be folded into cubes? Put a " $\sqrt{\prime \prime}$ " in the brackets if it can or a " x " if it cannot.

Observe the nets above again. Which pattern of nets can always be folded into cubes?

Highlights of the Lesson

B.) Exploration on non 1-4-1 nets.

Please break the net (you can refer to the hint if it is given) and turn a right angle to form another shape of nets. Record your findings.
another shape of nets. Record your findings.

What can you discover?

Highlights of the Lesson

C.) Exploration on non 1-4-1 nets back to 1-4-1 nets.

Please break the net (you can refer to the hint if it is given) and turn a right angle to form another shape of nets. Record your findings.

